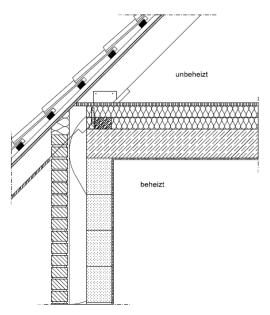

Porenbeton-Wärmebrückenkatalog 2022 Bundesverband Porenbetonindustrie e.V.

- 2 Zweischalige Außenwand aus Porenbetonmauerwerk mit Wärmedämmung und Vormauerschale
- 2.6 Anschluss zweischalige Außenwand an oberste Geschossdecke Traufanschluss, Dachraum unbeheizt
- 2.6.3 Innenschale aus Porenbetonmauerwerk d = 175 mm mit Wärmeleitfähigkeit λ = 0,10 W/(m·K) / Wärmedämmung d = 160 mm / Vormauerschale d = 115 mm

Materialkennwerte und Randbedingungen für die Ψ-Wert Berechnung


M	aterial	λ [W/(m·K)]
Fiii Ho	eckendämmung 240 mm ngerspalt 10 mm blz nenputz 10 mm erndämmung 160 mm orenbeton 175 mm ahlbeton ormauerschale 115 mm	0,035 0,067 0,130 0,700 0,035 0,100 2,300 1,100

Randbedingung	q[W/m ²]	$\theta[C]$	$R[(m^2 \cdot K)/W]$
Psi-Aussen, Dachraum unbeheizt		0,000	0,100
Psi-Aussen, Wand		-5,000	0,040
Psi-Innen-Wärmestrom aufwärts		20,000	0,100
Psi-Innen-Wärmestrom horizontal		20,000	0,130
Symmetrie/Bauteilschnitt	0,000		

Längenbezogener Wärmedurchgangskoeffizient Ψ

$$\psi = \frac{\Phi - U_1 \cdot b_1 \cdot \Delta T_1 - U_2 \cdot b_2 \cdot \Delta T_2}{\Delta T} = \frac{10,732 - 0,148 \cdot 1,958 \cdot 25,0 - 0,137 \cdot 1,535 \cdot 20,0}{25,0} = -0,029 \text{ W/(m·K)}$$

Konstruktionsdetail (nicht maßstäblich)

Anwendungsrandbedingungen

- Die Fußpfette ist in einer Dicke von mindestens 80 mm in einer Wärmeleitfähig-keit mit λ ≤ 0,035 W/(m·K) zu überdämmen.
- Die oberste Geschossdecke ist mit 240 mm Dämmung in einer Wärmeleitfähigkeit mit $\lambda = 0.035 \text{ W/(m·K)}$ auszuführen.
- Die Deckenstirnseite ist mit min. 120 mm
 Dämmung in einer Wärmeleitfähigkeit mit
 λ ≤ 0,035 W/(m·K) auszuführen.
- Die Ψ-Werte dürfen in einem Nachweis nicht mit dem Fx-Wert für die oberste Geschossdecke abgemindert werden.

Nachweis der Gleichwertigkeit

Gleichwertigkeit mit Detail Nr. 346 der DIN 4108 Beiblatt 2 Kategorie B, Ψref ≤ -0,07 W/(m·K)

Längenbezogener Wärmedurchgangskoeffizient Ψ = -0,029 W/(m·K)